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Abstract-For situations involving extremely short times following the start of transients, or very high 
heat fluxes, the classical diffusion theory of heat conduction breaks down since the wave nature of thermal 
energy transport dominates. In this work, the hyperbolic temperature response in a finite, isotropic medium 
with one surface insulated and the other surface irradiated with an axially symmetric heat flux is considered. 
The spatial profile of the heat flux is chosen to be either Gaussian, doughnut-shaped, or some combination 
of the two. The temporal profile is either continuous or a rectangular pulse. The choice of these profiles is 
based upon the premise that they approximate the outputs from some common laser sources. Calculations 
for a Gaussian source reveal the existence of a severe thermal wavefront which propagates through the 
medium, dissipating energy in its wake upon reflection at the boundaries. Also discussed is the relative 
importance of the parabolic and hyperbolic heat conduction models for a metal exposed to three ranges 

of rectangular pulse duration. 

INTRODUCTION 

IN FOURIER heat conduction, the constitutive law which relates heat flux q to the temperature gradient VT is 
of the form 

q(F, t) = -kVT (1) 

where k is the thermal conductivity. While the heat conduction equation based on this model is acceptable for 
the majority of practical situations, it fails to adequately predict temperatures in situations involving extremely 
short periods of time, extreme temperature gradients, or very low temperatures. To avoid difficulties in such 
situations, the following hyperbolic constitutive law, which accounts for a finite build-up time for the flow of 
heat, has been proposed : 

a4 
T~ +q = -kVT. 

Equation (2), which is actually a truncated version of a more general relation originally derived by Maxwell 
[l] during the course of his work on the kinetic theory of gases, states that heat flow does not begin immediately 
following a thermal disturbance, but in fact grows with the relaxation time r. The relaxation time is a measure 
of the thermal inertia of the medium in much the same way that the ratio of inductance to electrical resistance 
is a measure of electrical inertia in a transmission line [2], for example. A typical value of the relaxation time 
7 for metals has been reported [3] to be of the order of lo- ’ ’ s, while recent work by Kaminsky [4] on non- 
homogeneous inner structure materials revealed values of z of the order of fractions of a minute. When 
equation (2) is combined with the energy equation, the following heat conduction equation results : 
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NOMENCLATURE 

A fraction of surface heat flux containing T(r, 2, t) temperature 
Gaussian mode 7-0 base temperature 

c speed of thermal wave propagation 2 axial space variable. 

GP specific heat 
d characteristic beam radius Greek symbols 
,f‘(t) temporal profile of surface heat ff ux thermal diffusivity 

[dimensionless] ; transform variable 
f;(~ ; m) functions defined by equations Y attenuation coefficient 

(24b) and (24c) l- defined by equation (A6) 
F(t) dimensionless temporal profile of surface S(c) delta function of argument 5 

heat flux ? dimensionless axial space variable 
g(B) defined by equation (19) ??I dimensionless medium thickness 
G, (p, q, [) function defined by equation O(p, q, 5) dimensionless temperature 

(28b) &p, q, <) first transform of dimensionless 
G2( p, q, 5) function detined by equation temperature 

(32b) &( p, n, 5) second transform of dimensionless 
G3 (p, pi, <) function defined by equation temperature 

(C2) P dimensionless reciprocal of characteristic 
G,(p, q, 5) function defined by equation beam radius 

(C3) P dimensionless radial space variable 
H(t) unit step function of argument < P density 
I,(x) modifi~ Bessel function of the first kind 5 dimensionless time variable 

of order zero 5* defined by equation (36b) 
JO(x) Bessel function of the first kind of order At dimensionless temporal pulse width 

zero w dimensionless parameter defined by 
k thermal conductivity equation (22b). 
L medium thickness 
m summation index Subscripts 

q(p, r, t) heat flux 1” dimensionless medium thickness or 

E, 

scaling factor limiting heat flux 
limiting heat flux P specific heat 

r radial space variable r radial heat flux component 
s Laplace transform variable Z axial heat flux component 
t time variable 1,2,3,4 functions defined by equations 
Al temporal pulse width (28b), (32b), (CZ), and (C3). 

(3) 

where constant properties have been assumed for a medium with no energy generation. This equation, which 
is hyperbolic in nature, reduces to the standard parabolic heat conduction equation as the speed of energy 
propagation, c, becomes infinite. Corrections to equation (3) which involve higher order time and space 
derivatives on temperature have been derived by Simons [5]. 

Although equation (2) was originally derived in the framework of an ideal gas, Chester [6] has suggested 
that it should apply equally well to solids which may be considered as phonon gases in which an individua1 
phonon represents a mechanica vibration of atoms. Hence, a thermal wave propagates through a solid as a 
phonon density disturbance. When a solid is irradiated with a laser of sufficient power over very short intervals 
for example, such a disturbance results when the absorbed photon energy from the beam is converted into 
kinetic energy of free electrons, which is then transferred to the lattice atoms [7]. 

The wave nature of heat propagation has been the subject of numerous investigations. For example, Carey 
and Tsai [8] used the finite element method to solve the hyperbolic heat conduction equation in a finite medium 
for two sets of boundary conditions. &sik and Vick [9] considered hyperbolic heat conduction in a medium 
with insulated boundaries subjected to a volumetric energy source in the form of a concentrated pulse of 
energy. Their analysis was thus appropriate for a material which is a good absorber of heat. The energy pulse 
was found to give rise to a severe thermal wavefront which dissipated energy in its wake as it traveled from 
the front to the rear boundary of the medium. Upon striking the rear boundary, the wave reversed its direction 
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of propagation and continued to dissipate its energy on its trip back to the front boundary. Frankel et al. [IO] 
developed a flux formulation for hyperbolic heat conduction and again considered traveling thermal waves 
due to a pulse of energy within a finite medium. Interest in the temperature response due to impulsive 
mechanical loading of a linear elastic material has given rise to a considerable body of literature dealing with 
the simultaneous propagation of coupled thermal and mechanical waves through the material [ 111. 

The existing hyperbolic heat conduction analyses consider only unidimensional heat conduction. For 
situations which involve laser beam irradiation of a surface, it is appropriate to consider the spatial profile of 
the impinging beam in a heat conduction analysis. For example, most pulsed solid state lasers will operate in 
the lowest order spatial mode which is known as TEMoot or Gaussian mode. Many high power CO* and 
solid state lasers operating in an industrial environment emit beams which are generally complicated mixtures 
of the two lowest order spatial modes [12], TEMoo and TEM,,,., the latter mode of which is often referred to 
as the doughnut mode. These spatial distributions are generally axisymmetric although in practice some 
deviation from axial symmetry is usually inevitable due to the type of resonator used, imperfections in the 
laser medium, and thermal effects. The spatial profile of the beam influences the extent of the heat affected 
zone and the degree to which material on, and adjacent to the surface is metallurgically altered [ 131. 

Several authors [14-161 have studied the effects of axisymmetric sources using the parabolic heat conduction 
equation. However, the results of such analyses are not always applicable to situations involving extremely 
short pulses, such as those which are emitted by various solid state lasers, for which the pu!se widths can be 
in the nanosecond-picosecond range, and the high initial heat fluxes involved in certain surface engineering 
processes [ 171. 

The use of a surface source in a heat conduction analysis associated with laser irradiation is based on the 
fact that a laser beam which irradiates a metal surface is absorbed in a thin layer which is generally several 
hundred angstroms in thickness. According to Sparks [18], the absorbing layer is sufficiently thin so as to warrant 
the assumption that the incident radiation may be considered a surface source. This situation corresponds to 
a material for which the optical attenuation coefficient is large. For a typical metal, the attenuation coefficient 
falls in the range of IO’-lo6 cm-’ [19]. 

The present work is concerned with the investigation of the temperature response in a finite region to 
axisymmetric surface sources which are either temporally continuous or rectangular pulses activated for a 
small period At. The spatial profile of the source may be either Gaussian, doughnut or mixed, the latter being 
a combination of the Gaussian and doughnut modes. The material properties are assumed constant, and 
radiation and convection from the irradiated surface are neglected. Appendix A of this paper contains a 
discussion of the relative importance of the hyperbolic and parabolic heat conduction models for a metal 
irradiated with three ranges of pulse width from a solid state laser. The purpose of this appendix is to outline 
one realm of practical application of hyperbolic heat conduction. 

PROBLEM FORMULATION 

The energy conservation equation in cylindrical coordinates is given by 

I a ~5(rq’)+~-_pcp~=o 
where q, and q2 are the radial and axial components of the heat flux vector, respectively. The hyperbolic 
constitutive equations, which are valid at all points in the medium, are written as 

aqz 
7at +qz = -kg. 

When the heat flux components are eliminated from equations (4) to (6), the following hyperbolic heat 
conduction equation which governs the temperature distribution in an isotropic medium which has no 
volumetric energy sources results : 

aZT 1aT a2T 1 aT 
’ a2T in r>O,O<z<L,t>O p+;~+az’=;~+7at” 

where c is the speed of the thermal wavefront which is related to the relaxation time z through 

t TEM : transverse electric and magnetic mode. 
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The classical heat conduction equation which corresponds to instantaneous energy diffusion is retrieved when 
r -+ 0. Note that absorption of laser irradiation can be modeled as a volumetric heat source and this is briefly 
discussed in Appendix B as it relates to the problems addressed in this work. 

The present investigation is concerned with axisymmetric, two-dimensional heat conduction in a medium 
with constant thermal properties and no energy generation. For times t > 0, the surface z = 0 is irradiated by 
a source with specified spatial and temporal profiles, while the surface z = L is kept insulated and will thus 
reflect the thermal wave incident to it. The initial conditions are thus 

T= T,, for t = 0 (94 

aT 
-=O 
at ’ 

for t = 0. 

The surface heat flux [20] is specified as 

q._ = qJ(t) 
[ 

A + (1 -A) $ 
I 

emcrzid*), on z=O 

@b) 

where q. is a factor corresponding to the maximum incident flux for a Gaussian source and contains important 
information about surface physics, e.g. reflectivity, etc. The parameter d is a characteristic beam radius which 
represents the circular boundary within the Gaussian source that contains 63% of the total beam power 
incident to the surface. The function f(t) is the temporal profile of the heat flux which is dimensionless. The 
parameter A is the fraction of the total flux that contains the Gaussian mode and may be represented by 

A=- TEM,, 
TEMoo+TEMo,. 

(lob) 

where A falls in the range 0 < A < 1. Figure l(a) depicts the spatial profile given by equation (lOa) for 
0 < A < 1. Figure 1 (b) shows the Gaussian source which corresponds to case A = 1. The maximum irradiance 
for a Gaussian source occurs at its center and is generally the reason why it is the preferred source for many 
material processing applications involving highly reflective metallic surfaces. The doughnut source corresponds 
to the case A = 0 and represents a situation where the maximum irradiance is not only reduced from that of 
the Gaussian source but is concentrated in a ring about the center of the profile which is at zero irradiance. 
The doughnut source is generally useful in situations where the concentrated energy ring leads to a better edge 
quality in various cutting operations. 

When equation (lOa) is combined with equation (6) and the result evaluated at z = 0, the following boundary 
condition on temperature results : 

-~~=q~[/(t)+r~][A+(I-A)~]e~(rz.“l), on z=O. (11) 

Additional boundary conditions on temperature are 

T-+ To, as r-+co (124 

(a) W 

FIG. 1. Spatial profiles of laser sources : (a) doughnut ; (b) Gaussian 
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ar 
ar=O, on r=O 

aT 
-= 0, on z= L. 
aZ 

For convenience in the subsequent analysis, we introduce the following dimensionless quantities : 

cr 
p=,> the dimensionless radial distance 

CZ 

)1=z> the dimensionless axial distance 

CL 
rl,=2c(, the dimensionless thickness 

5 = $, the dimensionless time 

p=;, the dimensionless reciprocal of d 

&P, % 0 = 
T(r, z, t) - T0 

qo+c ’ 
the dimensionless temperature. 

WI 

(12c) 

(1W 

(13b) 

(13c) 

(13d) 

(13e) 

(13f) 

The temperature problem defined by energy equation (7) along with equations (9a), (9b), (11) and (12a)- 
(12~) is expressed in dimensionless form as 

a*e I ae a*8 
~+--+_i=2~+~ in p>O,O<q<ql,t>O 
ap pap all ai; al*’ 

e = 0, for 5 = 0 (14b) 

ae 
2 = 0, for 5 = 0 

de 
- -2F(~)[A+(l-A)p2p2]e-p2p2, on it = 0 

q- 

de 
-= 0, on q = qc 
aq 

e-+0, as p+o0 

(14c) 

ae 
-=O, on p=O 
ap 

where the function F(r) represents the dimensionless temporal profile of the surface heat flux. Solutions of 
this system for prescribed F(t) and A are presented in the following sections. 

ANALYSIS 

The solution of the hyperbolic system (14) is examined below for a continuous Gaussian source, a continuous 
doughnut source, a continuous mixed source, a single pulse Gaussian source, a single pulse doughnut source, 
and a single pulse mixed source. The solutions for the corresponding parabolic (i.e. Fourier) system are listed 
in Appendix C for purposes of comparison with the hyperbolic solutions. 

Continuous Gaussian source 
For a continuous Gaussian source, f(t) = H(t) and A = 1. The dimensionless form of equation (11) becomes 

ae 
g- 

- -[2H(5)+6(5)] eepzpz, on q = 0. (15) 

In order to solve equation (14a) subject to equations (14b), (14c), (14e)-( 14g) and (1 S), the following integral 
transform pair on the p-variable is introduced : 
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transform 

inversion 

where J&c) is the zero-order Bessel function of the first kind. In order to transform system (14), we operate 
on these equations with 

s 

% 

P’J, (BP’) dp’ (17) 
p’ = 0 

which gives 

a28 8 a20 
?z=2-++,+B28, in O<rl<~,,i”>O 
“yl x x 

0~0, for 5=0 

a0 
z=O, for <=O 

(18a) 

(18b) 

(18~) 

at7 
i%- 

- -Pff(O+&5)lgW, on rl = 0 

aB 

(184 

g= 0, on I] = q, (18e) 

where the function g(/?) is defined by 

I 

r 

g(B) = p’ eePZP” J,(/?p’) dp’. (19) 
p’= 0 

Application of the Laplace transform defined by 

to equations (18a)-( 18e), gives the following system for the double transform &j?, I], S) : 

The solution to equation (21a) subject to equations (21b) and (21~) is 

where the dimensionless parameter o is given by 

w = J((s+ I)‘+/?‘- 1). 

For large values of o (or small values oft) we may write 

and hence equation (22a) may be re-written as 

(21a) 

(21b) 

(2lc) 

(224 

Wb) 

(23) 
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&?,tf,s) = ‘$ f+ * 
[ 1 

f (e-mff(s;m) +,-Mds;m)) 

m=O 

where 

fl(tl;m) = 2mv,+9 

fh;m) = 2mrlt+Gh--v). 
Using the Laplace transform inversion rule [21] 

the term eewf;(rl;m)/ccs in equation (24a) is inverted to 

J 

( )-!l 

5 

e-o/,fvm 
C=O 

e-“Z,(J(l -B')J(Y2-f,'(?;m)))H(5'-f;(?;m))d5', for 0 G /I' < 1 
L-1 ___ = 

WS 5 

r'=o 
e-“Jo(J@*- 1)J(5'2-f~(~;m)))H(5'-f;(?;m))d5', for 1 G /I < 00' 

The integral defined by equation (19) evaluates to [22] 

e-(B*i4r’) 
s(B) = T. 

Finally, the double inversion of equation (24a) gives the desired solution as 

%rl,t;) = f 
lt7=0 s 

,I=,,. ,e-'GI(P,fi(rl;m),5')d5' 
I .m 

+~G,(p,f*(s;m),r)H(e-f*(~;m))+ e-5'G,(p,f2(tl;m),5')d5' 1 
where 

(244 

Wb) 

wc) 

(25) 

(26) 

(27) 

(284 

(28b) 

and Z,(x) is the modified Bessel function of the first kind of order zero. Recalling the definitions off, and f2 
given by equations (24b) and (24c), we observe that the first two terms in equation (28a) represent the thermal 
waves propagating from q = 0 to qc. The second two terms represent the thermal waves reflected from the 
insulated boundary at rZ = ran. The integrals in equation (28a) cannot be expressed in terms of tabulated 
functions and must therefore be evaluated numerically. 

It is of interest to consider the limit as the finite region approaches a semi-infinite region, i.e. as r~, + 00. 
The limit of equations (28a) is 

where 

+ J p: , Be-‘““‘“‘)Jo(B~)Jo(J(B2- l)J(5’-rl’)> dS . Wb) 

Equations (28a) and (29a) predict the same temperature distribution in the medium prior to the time when 
the thermal wavefront reflects from the insulated boundary at r] = qt. The first term in equation (29a) has a 
purely dissipative wave nature which becomes vanishingly small at longer times. The second term in equation 
(29a) is a correction to the thermal field which results from both the dissipative wave nature and the diffusive 
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nature of the problem in that it is inactive for the time period < < r] and eventually reduces to the solution to 
the Fourier heat conduction equation at longer times (see Appendix C). The second term effectively ‘smears’ 
the dissipative wave behavior of the thermal field into diffusive behavior, with time. 

Continuous doughnut source 
The doughnut source depicted in Fig. l(a) is characterized by a central irradiance minimum, which cor- 

responds to zero heat flux, surrounded by a concentrated ring of energy. In this case, f(t) = H(t), A = 0, and 
the dimensionless form of equation (11) becomes 

a0 
(30) 

A comparison of equations (15) and (30) reveals that the flux due to the doughnut source is a higher order 
radial distribution of energy as is evident from the p2p2 multiplier. Following the solution procedure as 
previously outlined for the continuous Gaussian source, with a proper inte~retation of the integral 1221 

(31) 

we find the following dimensionless temperature : 

J :;,,, ,e-“C,(p,fi(g;m),5’)de / ,m 
+e~G,(p,~~(rl;m),C)N(S.-f2b:m))+ :_ia,~~e-‘.G2(p,~*19;m).i.)dp J 1 (324 * , 

where 

Continuous mixed source 
The temperature response to the continuous mixed source may be written as a combination of the solutions 

given by equations (28a) and (32a). This is 

: + J e-‘VG,(p,f‘,(r; m>, 57-i-(1 --A)G,(p,f,(rl;m), 5’)) dS’ i=f,(s:m) 

(33) 

Single pulse Gaussian source 
The temporal profile of a singIe pulse activated for a small time period At is 

f(l) = H(r) - H(t-At) 

and the dimensionless form of equation (1 I) becomes 

(34) 

a0 
-- = -[2{H(5)-H(~-A.5)}+S(~)-S(~-A~)]e-~’P2, on T = 0. 

ci?j (35) 

The temporal profiie of the Gaussian source irradiating the surface q = 0 is rectangular with a width of A<. 
In reality, the temporal profile of a pulsed laser does not possess the sharp time discontin~ties dictated by a 
rectangular pulse. The temporally rectangular profile is, however, a useful approximation. 
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Using the solution procedure previously outlined, the temperature response due to a single pulse Gaussian 
source is 

+ ~G,(p,f~(?:m),C)H(C-f2(9;m))+ c s e-“G,(P,f2(~;m),r’)dr’ 
E’ =f*fq:m) 1 

(364 y = ‘y 

G,(p,f,(?;m),r*)H(r*-f,(?;m))+ 1. c =f(q, 
I .m 

,e-S’G,(p,f,(tl;m)yT’)d5’ 

+ e~G,(p,fi(?;m),5*)H(5*-fi(l;m))+ 

c = C’ s, 5 =,cq,m,e-i’G,(p,f,(rl;m),5’)dr’ 
: * 1 

where 

t* = t-A<. (36b) 
Again, from the definitions off, and fi given by equations (24b) and (24c), the first, second, fifth, and sixth 
terms in equation (36a) represent the thermal pulses propagating from q = 0 to Q, The third, fourth, seventh, 
and eighth terms in equation (36a) represent the thermal pulses reflected from the insulated boundary at 

9 = 5% 

Single pulse doughnut source 

The temperature response due to a single pulse doughnut source with a temporally rectangular profile is 
found to be 

+~G,(p,f,(~;m),C)H(;-f~(tl;m))+ 
5 

I 
e-’ G2(PIf2(v; 4, t’) dt’ e’ =/*or:m) 1 

(37) 

Gz(p,f,(tl;m),5*)H(r*-f,(rt;m))+ ~e-“G,(p,f,frl;m),5’)d5’ i* 
-te~G,(p,f~(9;m),5*)Hf5*--f,(~;m))+ 

c = <’ 

s 
e-~G,fp,fi(vt;m),5’)dr’ . 5’ =f&;m) 1 

Single pulse mixed source 
The temperature response to a pulsed mixed source is a combination of the temperature profiles given by 

equations (36a) and (37) 

f ewe (AG,(p,f,(?;m),~‘)+(l -4G2(p,f2(v;m), t’)> d6’ 1 
-~~o[~~(RG,(p,h(n: m),r*)+(1--A)G,(p,f,(11;m),r*)fH(e*-f,(tl;m)) 

-* 

+e~{AG,(p,f~(rl;m),S*)+(l-A)G,(p,f2t~;m),5*)}H(S*-f~(~;m)) 

y = 6’ 

f 
s 

eif’ (AG,(p,f,(~;m),5’)+(1_A)GIt~,f,(rl;m),5’)f dt” 
C=Jtl(v:m) 

(38) 

5’ s = <* 

+ e-‘~(AG,(p,f,fg;m),e’)+(l--A)G,(p,fz(rl;m),5’)~dr’ 
F=f21;(q:m) 
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RESULTS AND DISCUSSiON 

Numerical computations which model the temperature response due to an axisymmetric heat flux absorbed 
in the surface plane q = 0 of a finite medium of width g, = 1 are displayed in Figs. 2-6. Each figure contains 
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p q 0.0 

0.0 0.5 1.0 1.5 2.0 

5 

2.5 3.0 3.5 4.0 

FIG. 6. Variation of center temperature with the time, 5, for a pulsed surface heat flux of Gaussian shape. 

both the hyperbolic and parabolic temperature profiles due to a Gaussian surface source, under the conditions 
indicated, for purposes of comparison. In Figs. 24, a continuous Gaussian source is considered, whereas in 
Figs. 5 and 6 a rectangular pulse is considered. Similar developments are possible with the doughnut and 
mixed surface sources although they are not considered here. In each case, ISML numerical integration routines 
were used to evaluate the temperature distributions. The number of terms used in the summations depended 
upon the chosen values of 5 and r]. 

Figure 2 depicts the build-up of temperature on the surface v = 0 at dimensionless times of 5 = 0.3,0.7, 1 .O, 
and 1.4. Both the parabolic and hyperbolic surface temperature distributions generally follow a Gaussian 
profile in that the temperature is maximum at the center p = 0, and gradually decreases away from the center 
until the lowest temperatures are reached at the very edge of each profile. The largest differences between the 
parabolic and hyperbolic solutions occur at the smaller times of 5 = 0.3 and 0.7 and at the center of the profile. 
At these times, the parabolic solution underestimates the surface temperature response when compared with 
that due to the hyperbolic solution over the range of p considered in this figure. At approximately 5 = 1.4, the 
parabolic and hyperbolic solutions are identical and hence the wave nature of heat conduction is not significant. 
The thermal response of the medium is thus adequately modeled with the classical Fourier heat conduction 
equation. It should be noted that the hyperbolic model will generally predict higher surface temperatures than 
the parabolic model since the former requires a finite build-up to the commencement of heat conduction while 
the latter predicts instantaneous energy propagation. 

Figure 3 shows the variation of the temperature along the axis (p = 0) for dimensionless times of 5 = 0.6 
and I .2. Although the net energy content at each time is the same for both models, the distribution of energy 
in each case is markedly different. At both times, the parabolic model predicts instantaneous energy propagation 
through the medium since all points of the medium are instantaneously affected by the surface heat source. 
At 5 = 0.6, the hyperbolic model predicts a build-up of temperature at points on the axis which lie within the 
range 0 < r] < 0.6 with a severe thermal wavefront at q = 0.6. Points on the axis which lie in the range 
0.6 < q < 1 have yet to feel the effect of the surface heat source and hence remain at zero temperature. Since 
the thermal wavefront has not yet reached the insulated boundary at Q = 1, the limiting solution for the semi- 
infinite body, given by equation (29a), and the finite body solution, given by equation (28a), predict identical 
temperature distributions. At 5 = 1.2, the thermal wavefront has reflected from the insulated boundary. This 
is evident from the apparent temperature jump in the hyperbolic profile at g = 0.8, at which point the thermal 
wave traveling toward the insulated boundary and that reflected from the insulated boundary overlap resulting 
in a highly localized temperature increase (a mathematical verification of this fact may be obtained through a 
comparison of equations (24b) and (24~) at r] = 0.8 and m = 0). Such behavior is not evident from the parabolic 
model which predicts a smooth temperature distribution due to instantaneous energy propagation. 

Figure 4 shows the temperature variation with time at three points along the axis. The hyperbolic solution 
initially predicts a discontinuous jump in temperature at the surface 9 = 0. The surface temperature gradually 
increases up to 5 = 2.0 at which time it jumps due to the overlapping of the thermal wave traveling towards 
the insulated boundary and that reflected from the insulated boundary. For l > 2.0, there is little difference 
between the surface temperature predicted by the parabolic and hyperbolic models. At the internal points 
q = 0.5 and 1.0, the hyperbolic model predicts that finite times of < = 0.5 and 1.0, respectively, are required 
for the commencement of heat conduction. At each of these locations, the temperature again exhibits jumps 
at discrete times indicating an overlap of thermal waves. 
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Figure 5(a) shows the variation of temperature along the axis at times 4 = 0.3 and 0.8 due to a single surface 
pulse activated for a period A< = 0.2. The parabolic temperature profile predicts a smooth build-up of heat 
transfer in the medium until each point along the axis equilibrates to the same temperature. In contrast to this 
behavior, the hyperbolic model predicts that the surface pulse generates thermal waves, in the form of 
temperature pulses of width Al = 0.2, traveling towards the insulated boundary. During the course of its 
movement towards the insulated boundary, the thermal wave dissipates energy in its wake and hence the 
nominal amplitude of the pulse is attenuated with time. Again, the parabolic and hyperbolic models predict 
dramatically different energy distributions in the medium in response to the surface pulse. Whereas the 
hyperbolic model predicts highly localized peak energies along the axis, the parabolic model predicts that the 
peak energies are distributed all along the axis. 

Figure 5(b) depicts the temperature pulse considered in Fig. 5(a) after its reflection from the insulated 
boundary at times 5 = 1.4 and 1.9. The amplitude of the reflected pulse is greatly diminished after its reflection 
from the insulated boundary although the wave nature of heat conduction is still evident. With increasing 
time, differences between the hyperbolic and parabolic models greatly diminish. 

Figure 6 shows the variation of the axial temperature with time at two points on the axis due to a surface 
pulse activated for a period A< = 0.2. At the surface, the parabolic solution predicts a sharp but smooth rise 
in temperature at initial time, to a maximum temperature at 5 = 0.2, at which time the surface pulse is 
deactivated. The temperature then gradually decreases to a nearly constant value. On the other hand, the 
hyperbolic model predicts that a severe initial temperature is sustained at the surface of the body during the 
time when the pulse is activated. After the pulse is deactivated, the temperature abruptly drops. A similar 
behavior is found at the midpoint of the axis, 9 = 0.5, although the amplitude of the pulse is significantly 
attenuated from that at the surface. An interesting effect which is due to reflection of the surface temperature 
pulse from the boundaries is evident from the additional pulses centered at times 5 = 1.6, 2.1, 2.6, and 3.6. 
The pulse centered at 5 = 2.1 represents the jump in surface temperature due to reflection of the surface pulse 
from the insulated boundary. Similarly, the pulse centered at 5 = 1.6 represents the jump in temperature at 
‘1 = 0.5 due to arrival of the reflected pulse at that point. The pulse centered at < = 2.6 represents the jump in 
temperature at r~ = 0.5 due to partial reflection of the pulse from the surface, and finally, an additional reflection 
at q = 0.5 is evident at t = 3.6 from the insulated surface. In each case the amplitude of the pulse is greatly 
attenuated since the pulse dissipates energy through the medium. At later times the parabolic model predicts 
little change, if any, in the temperature at the surface and midpoint of the axis since energy from the surface 
pulse is instantaneously distributed in the medium. 

CONCLUSIONS 

The transient temperature distribution in a two-dimensional isotropic medium with one surface subjected 
to an axisymmetric heat source and the other surface insulated has been determined using the hyperbolic heat 
conduction model. Gaussian and doughnut profiles, which are either temporally continuous or rectangular 
pulses, were chosen since they adequately model the output from many laser sources. A comparison of 
temperature distributions resulting from the hyperbolic and parabolic models reveals that, for extremely short 
times, the parabolic model significantly underestimates the surface temperature. The hyperbolic model predicts 
a severe thermal wavefront which dissipates energy in its wake as it travels through the medium. Due to the 
overlapping of reflected thermal waves from the two boundaries, the hyperbolic temperature profile exhibits 
jumps along the axis of the material. A comparison of the relative importance of the parabolic and hyperbolic 
models for a metal exposed to three regimes of rectangular pulse width revealed that the hyperbolic model 
becomes significant for pulse widths of the order of 10P” s if the thermal field due to an accompanying 
dilatational wave is neglected. 

In the present analysis, the thermophysical properties are assumed to be constants so that analytic solutions 
to the problem may be obtained. In reality, the material properties vary with temperature; but for such 
cases the problem should be solved by purely numerical approaches. In situations involving high surface 
temperatures, the inclusion of the fourth power temperature law in the boundary condition for heat flux also 
results in a non-linear problem which should be solved numerically. 
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APPENDIX A. WHEN IS HYPERBOLIC HEAT CONDUCTION IMPORTANT DURING PULSED 
LASER IRRADIATION OF METALS? 

The following developments neglect the dilatational or shock wave which may accompany impulsive heating since the 
solution to this coupled problem is beyond the scope of this paper. It should be kept in mind that the deformation of the 
material in these situations can make a significant contribution to the thermal field [ 1 I]. 

The parabolic or Fourier heat conduction equation is given by 

The hyperbolic heat conduction equation is given in terms of temperature by equation (3) of the paper 

and in terms of heat flux q. by [lo] 

642) 

In order to determine the relative importance of the hyperbolic and parabolic models, it is necessary to compare the two 
terms on the right-hand side of either equation (3) or equation (A2). For a material to exhibit wave nature of heat conduction, 
equation (3) requires that 

and equation (A2) requires that 

__>,‘a4 1 a*q 

c2 at2 oL at 

where we have dropped the bold face vectorial notation in equation (A2). Equation (A3) may be written as 

(A3) 

(A4) 

at a 

where 
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(‘46) 

When equation (A5) is integrated, we find 

(A7) 

where C, is an unknown constant. Similarly, integration of equation (A4) yields 

where C, is another unknown constant. If either of the conditions given by equation (A7) or (A8) is satisfied, then the wave 
nature of heat conduction is important. 

For many metals, the thermal diffusivity is approximately IO- ’ m2 s- ’ during the initial stages of laser irradiation and 
the relaxation time is of the order of lo-” s [3]. According to Maurer and Thompson [23], the wave nature of heat 
conduction is appropriate when the surface heat flux is equal to or greater than 10” W m-‘. Therefore, the thermal wave 
speed is of the order of 

lx 
e= Jo - z lOOOms_’ 

r 

and the limiting heat flux is taken to be 

Aq( = 10” Wm-‘. (AlO) 

A comparison of the relative importance of the diffusive (Fourier) and wave (non-Fourier) models for a metal irradiated 
with three ranges of rectangular pulse width, along with potential sources may be found in Table Al. According to the 
criterion established by equation (A8), the Fourier heat conduction equation adequately models heat transfer due to 
nanosecond pulses (assuming the unknown constant multiplier to have a value of one). For pulse widths less than a 
nanosecond, heat conduction changes from a diffusive behavior to a dissipative wave behavior over the short times of 
interest. Additional background on the solid state lasers mentioned in Table Al may be found in Hecht [24] or Koechner 
[251. 

APPENDIX B. VOLUMETRIC SOURCE FORMULATION 

Many heat transfer problems associated with laser irradiation can be written in terms of a volumetric heat source term 
which includes the effect of the attenuation of absorbed energy with depth beneath the surface. In terms of a volumetric 
heat source, equation (7) may be re-written as 

(Bl) 

where y is the attenuation coefficient and a Gaussian profile is assumed. Equation (Bl) indicates that the energy absorbed 
in the medium is exponentially damped through the medium thickness. Also, the inclusion of a time derivative on f(t) in 
the source term is required by the hyperbolic constitutive law (equation (2)). Since the attenuation coefficient is typically of 
the order of lo’-lo6 cm-’ for most metals [19], the absorbed energy can be regarded as a surface heat source. Therefore, 
the z-dependence in the source becomes 

lim ye-,’ = 6(z) 
7 + z, (B2) 

where 6(z) is the delta function of argument z. The solution of equation (Bl), subject to 

Table A 1. Regimes of diffusive and dissipative wave propagation models 

Pulse 
duration 

(s) 
&/At 

(W mm2 ss’) 

Dominant heat 
conduction 
mechanism 

Representative 
pulse source 

Ruby laser 
Q-Switched Nd : YAG laser (with or without 

10-+-lo~9 10’9-10*0 
harmonic generation) 

10~%1044 Diffusion Excimer laser 
Nd : glass lasers (with or without harmonic 
generation) 

10-9-10-‘0 1044-105 
Diffusion-dissipative 
wave propagation 

Cavity-dumped Nd : YAG laser 

Modelocked Nd : YAG laser 
Cavity-dumped Nd : YAG laser 
Q-Switched, modelocked Nd : YAG laser 
Cavity-dumped, modelocked Nd : YAG laser 

Dissipative wave 
propagation 

Modelocked Nd : YAG laser 
Q-Switched, modelocked Nd : YAG laser 
Cavity-dumped, modelocked Nd : YAG laser 
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g=O, at z=O (B3) 

and equations (9a), (9b) and (12a)-(12c) is thus identical to the solution of equation (7) subject to equations (9a), (9b), 
(11) (with A = 1) and (12a)-(12c). 

APPENDIX C. FOURIER HEAT CONDUCTION SOLUTIONS 

Continuous mixed source 

where 

Continuous Gaussian source. Set A = 1 in equation (Cl). 
Continuous doughnut source. Set A = 0 in equation (Cl). 

Sinqle pulse mixed source 

@(P, 930 = 
5’ 

I 
= <. 

- 

r=a 
{AG,(p,f,(~;m),S’)+(l-A)G,(p,f,(q;m),~’)}~~~ 

c -s = (’ 

c=cl 
WXp,f,(rl;m), r’)+(l-A)G,(~,f,(rl;m).r’)J jc,(ly$r,) 

Single pulse Gaussian source. Set A = 1 in equation (C4). 
Single pulse doughnut source. Set A = 0 in equation (C4). 

PROPAGATION DANS UN MILIEU FINI ET REFLEXION D’ONDES THERMIQUES 
DUES A DES SOURCES AXISYMETRIQUES EN SURFACE 

Resume-Pour des situations de temps extrbmement court apris l’origine du transitoire ou de flux thermique 
tres eleve, la thiorie classique de diffusion de la chaleur n’est pas valable parce que la nature ondulatoire 
domine dans le transport d’lbnergie. On considire ici la reponse hyperbolique dans un milieu fini isotrope 
avec une surface isolee et l’autre surface irradiee avec un flux thermique axialement symbtrique. Le profil 
spatial du flux est choisi soit Gaussien, soit en forme de be&net, soit en combinaison des deux formes. Le 
profil temporel est soit continu, soit un creneau. Le choix de ces profils est base sur le fait qu’ils approchent 
la sortie des sources laser. Les calculs pour une source Gaussienne r&lent l’existence dun front d’onde 
thermique severe qui se propage a travers le milieu, dissipant l’energie dans son sillage par reflexion aux 
front&es. On discute aussi l’importance relative des modeles de conduction parabolique et hyperbolique 

pour un metal expose a trois domaines de duree de creneau rectangulaire. 

AUSBREITUNG UND REFLEXION THERMISCHER WELLEN IN EINEM ENDLICHEN 
MEDIUM MIT ACHSENSYMMETRISCH VERTEILTEN QUELLEN AN DER 

OBERFLACHE 

Zusammenfassung-Bei Betrachtungen, die sich auf sehr kurze Zeiten nach der Auslosung transienter 
Vorgiinge oder auf sehr groBe Wiirmestromdichten beziehen, versagt die klassische Theorie der War- 
meleitung durch Diffusion, da die Wellennatur des thermischen Energietransportes dominiert. In der 
vorliegenden Arbeit wird das hyperbolische Temperaturverhalten in einem endlichen isotropen Medium 
betrachtet. Das Medium besitzt eine adiabate Obertllche und wird auf der anderen OberlILche mit 
einem achsensymmetrischen Warmestrom beaufschlagt. Das raumliche Profil der Warmestromdichte wird 
entsprechend einer Gaul%Verteilung, oder wulstfiirmig oder als eine Kombination aus beiden gewahlt. Das 
zeitliche Profil ist entweder kontinuierlich oder es entspricht einem Rechteckimpuls. Die Wahl der Profile 
wird unter der Annahme getroffen, dag sie ungefahr der Abstrahlung von iiblichen Laser-Quellen ent- 
sprechen. Berechnungen fiir die GauBQuelle offenbaren die Existenz von scharf abgegrenzten thermischen 
Wellenfronten, welche durch das Medium wandern und dabei auf ihrem Weg bis zur Reflexion Energie im 
Medium dissipieren. Zusatzlich wird die relative Bedeutung der parabolischen und hyperbolischen Modelle 
fiir die Warmeleitung in einem metallischen Korper diskutiert, welcher drei unterschiedlichen Typen von 

Rechteckimpulsen ausgesetzt wird. 
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PACl-IPOCTPAHEHklE M OTPAlKEH5iE TEl-IJIOBbIX BOJIH B OI-PAHAgEHHOfi CPEAE 
3A C’4ET PACI’IOJIO~EHHbIX HA I-IOBEPXHOCTH OCECkiMMETPMYHbIX 

kiCT09HMKOB 

~OTW,HP&IK OYeHb Ma,IbIx npOM‘?X,‘TKOB Bpe.MeHH nOCne BO3HHKHOBeHEiI HeCTaI,HOHapHOrO COC- 

TORH~ maccmecKa~mi@$y3Homan Teopm~enn0np0~0nmcm4 HapymaercK,nocKonbKynpeobnanaeT 

~0~1~0B0ii xapaKTepTennonepemCa.AccnenyeTcn rHnep60nH9ecKHgTennoeoBoTanH~ ~0rpaHu~emiofi 

H3OTpOnHOfi Cp&Z, OmIHa nOBepXH%Tb KOTOpOii El3OnHpOBaHa,a Ha npyrOii UMeeT MeCTO OCZCHMMeT- 

pHgHblii TeIUIOBOii IIOTOK. Bbl6paHHblfi npOCTpaHCTBeHHbIi? npO@iJIb TenJIOBOrO nOTOKa IIBnlleTCK ray0 

COBCKHM RJIB TOpO~anbHblM,SU,ll IKe HX KOM6HHaIUiefi. BpCMeHHaK 3aBBCHMOCTb I'IOTOKa MOHOTOHHa 

HJni npenffaanreT co6oi-i npSIMOyI.OJIbHbIfi UMnynbc. BbIBop yKa3aliHbIX npo+ineir OCHOBaH Ha nony- 

U.,eHHH, ST0 OHll alIllpOKCHMHpyIOT 83nyYeHue HeKOTOpbIX nasepsblx HcTOSHHKOB. PacveTbI JlJIll 

rayCCOBCKOr0 HCTO'fHHKa yKa3bIBalOT Ha CyUeCTBOBaHHe XWZTKOTO BOJlHOBOrO t$pOHTa, PaCnpOCT- 

paeamuerocs B cpene H paccmsamulero meprmo B cnene npw 0TpaKceHmi Ha rpaHeuax.06cymnamca 

TaK~enpmfeHmmcTbnapa6onwiecKoiiwranep60nu~ecKoii Monenefi TennonpoBonHocmecny~aeB03- 


